Evaluating Chicago's Urban Heat Island Policy with Remote Sensing

Chris Mackey

The Heat Island Effect

When a large urban area is a few degrees warmer than its surrounding rural area.

Chicago Urban Heat Island June 5th 2009

293K

Two Ways to Combat Heat Island

The "Green" Method

The "White" Method

Increase Vegetated Surfaces

-Subsidize Green Roofs -Zone Parks -Replace Asphalt Lots with Green Fields -Plant Street Trees -Minimize Development over Vegetated Areas

Increase Reflective Surfaces

-Subsidize Reflective Roofs -Change Road Pavement to be more Reflective

Chicago Heat Wave of 1995

Caused 514 Citizen Deaths

Caused a Series of Policies Aimed at Combating the Heat Island

Chicago Heat Island Policies (since 1995) GREEN POLICIES WHITE POLICIES

-Over 500 new subsidized green roofs

-300 acres of schoolyard asphalt replaced with grass

-Over 57 new community parks

-At least 5,000 new street trees each year

-Tax incentives for reflective roofs

-New shingle reflectivity zoning codes (for new buildings)

-Brightened pavement on some major roadways.

-68 Alleyways changed to bright surfaces

Project Thesis

Have these policies amounted to a largescale impact on the heat island?

And, if so,

Which policies have been most effective? Is a green or a white strategy more effective?

Methods: Spatial Selection

SA LO

The City of Chicago June 5th, 2009 LANDSAT True Color

Methods: Temporal Selection

Methods: NDVI Change

- Calculate NDVI with LANDSAT bands 3 + 4 for both dates.
- Exclude pixels with NDVI less than .3.
- Subtract 1995 pixels from 2009 pixels.

Methods: NDVI Change

• Set 1995 to red channel, 2009 to green channel.

185,016 vegetated pixels in 1995. 175,289 vegetated pixels in 2009.

9,727 vegetated pixels lost.

Methods: Albedo Change

- Convert LANDSAT reflective band DN's to reflectance.
- Use Liang method to weight reflectances and obtain overall albedo.
- Subtract 1995 albedo from 2009 albedo.

Methods: Albedo Change • Set 1995 to red channel and 2009 to green channel.

.149998 average city albedo 1995. .173263 average city albedo 2009.

.023265 albedo increase.

.148293 average non-vegetated albedo 1995. .174788 average non-vegetated albedo 2009.

.026495 albedo increase.

Chicago Albedo Change 1995 - 2009

Albedo Decrease (< -.05)

Albedo Increase (>+.05)

Albedo Constant

Methods: Temp Change Justification

May 30th, 1995

Avg. Temp. at Midway: 67 F Avg. Temp. at O'Hare: 68 F

June 5th, 2009

Avg. Temp. at Midway: 65 F Avg. Temp. at O'Hare: 62 F

Results: Compare

Correlation of Changes (1995-2009)

NDVI Change toAlbedo Change toTemperature ChangeTemperature Change

Correlation of -.273539 Covariance of -.030190

Correlation of -.369368 Covariance of -.025238

Real Albedo Change?

.149998 average city albedo 1995. .173263 average city albedo 2009.

.023265 albedo increase.

Chicago Albedo Change 1995 - 2009 T

Albedo Increase (> +.05)

Albedo Decrease (< -.05)

Albedo Constant

Albedo Constant Neighborhood

Albedo Increase Neighborhood

Albedo Constant Neighborhood

Albedo Increase Neighborhood

Rough Qualitative Analysis of Policies

Green Policies			
Policy	Visually	Effect on	Area
	Effective	Temperature	Affected
Green Roofs	No	None	Single Building
Small Parks	Yes	Stabilize	Few Blocks
Large Parks	Yes	Decrease	Neighborhood
Street Trees	Yes	Stabilize	Regional
White Policies			
Policy	Visually	Effect on	Area
	Effective	Temperature	Affected
Road Pavement	Yes	None	Regional
Alleyways	No	None	Few Blocks
Residential Reflective Roofs	Yes	Decrease	Regional
Industrial Reflective Roofs	Yes	Decrease	Regional

Conclusion

Chicago's policies have been working gradually.

In terms of large-scale reduction of the urban heat island over a 15-year period, wide-spread use of reflective roofs seems to be most effective.

Roughly speaking, white policies tend to be more effective than green policies (probably because of cost).

Project Limitation: green policies may be more effective later in summer.

Conclusion

An effective green policy would probably involve limiting development rather than zoning small parks or promoting green roofs.

Present O'Hare Airport (Google Earth)

O'Hare Temperature Change (1995-2009)

References

Changnon SA, Kunkel KE, Reinke BC (1996). *Impacts and responses to the 1995 heat wave: A call to action.* Bulletin of the American Meteorological Society 77 (7), 1497-1506.

City of Chicago Department of Environment (2001). Urban Heat Island Initiative – Alley Reconstruction. URL: http://egov.cityofchicago.org/webportal/COCWebPortal/COC_ATTACH/UHIAlley.pdf

City of Chicago Department of Environment (2003). *Reflective Roof Shingles*. URL: http://egov.cityofchicago.org/webportal/COCWebPortal/COC_ATTACH/ReflectiveShinglesList4.30.7.pdf

City of Chicago Department of Environment (2006). *Guide for Building Green Roofs in Chicago.* URL: http://www.artic.edu/webspaces/greeninitiatives/greenroofs/main.htm

City of Chicago NeighborSpace Program (2010). *NeighbourSpace: Awards and Statistics*. URL: http://neighbor-space.org/awardsandstats.htm

Emily Pilloton (2006). *Chicago Green Roof Program.* Inhabitat. August 1st, 2006. URL: http://www.inhabitat.com/2006/08/01/chicago-green-roof-program/

Liang, S. 2000. "Narrowband to broadband conversions of land surface albedo I algorithms." *Remote Sensing of Environment* 76, 213-238.

SustainableCities_{TM} (2008). *Chicago: Converting Vacant Lots to Greenery*. Danish Architecture Center. URL: http://sustainablecities.dk/en/city-projects/cases/chicago-converting-vacant-lots-to-greenery

U.S. EPA Urban Heat Island Pilot Project (2002). *Profile of Chicago*. URL: http://www.epa.gov/heatisld/pilot/archives/Chicago.pdf Whitman S, Good G, Donoghue ER, Benbow N, Shou WY, Mou SX (1997). *Mortality in Chicago attributed to the July 1995 heat wave*. American Journal of Public Health. 87 (9), 1515-1518.