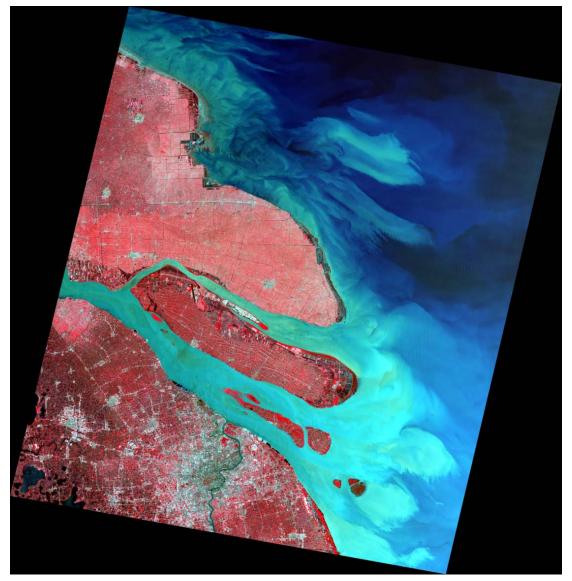
THE IMPACTS OF URBANIZATION ON THE SURFACE ALBEDO IN THE YANGTZE RIVER DELTA

CLASSIFICATION

07/20/2011


Mélanie Bourré

From the last meeting

2007 image was gap-filled \rightarrow Problem for the albedo calculation

 \rightarrow New image

Author	NASA Landsat Program	NASA Landsat program		
Publication Date	21/10/2008	22/02/2008		
Collection Name	Landsat 5TM scene	Landsat 7 ETM+ scene SLC-On		
Image Name	ID 201-985	ID 210-284		
Processing Level	Ortho, GLS 1990	Ortho, GLS 2000		
Publisher	USGS	USGS		
Publisher Location	Sioux Falls	Sioux Falls		
Product Coverage Date	08/11/1989	07/03/2001		

Mouth of the Yangtze River Delta 07/03/2001

Source : www.landcover.org

Image preprocessing

Same as before.

Pictures cut

Pictures of different sizes

Geometric and radiometric correction
Performed by USGS

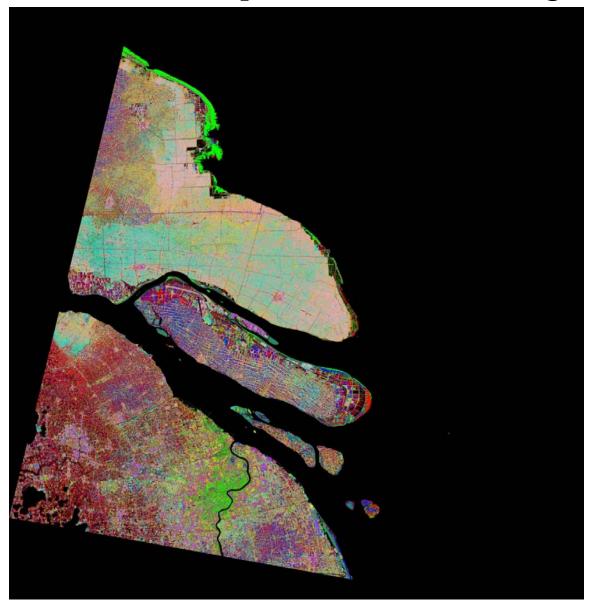
Atmospheric correction

No clouds or hazes \rightarrow No atmospheric correction needed

> Image enhancement

Automatic linear contrast stretching of 2% ENVY Software

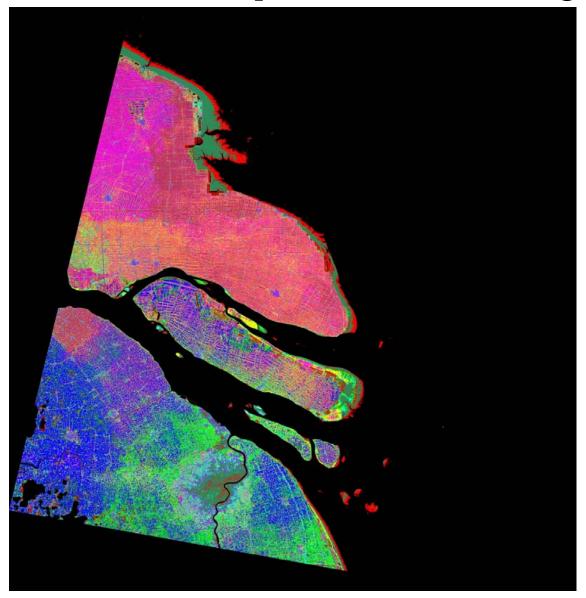
Unsupervised classification


Previous classification : most classes attributed to water

 \rightarrow Apply a mask on water

→ Unsupervised classification of the land
ISODATA Chosen parameters :

Number of classes : between 5 and 10 Number of iterations : 15 Change threshold : 5


07/03/2001 Unsupervised classified image

Identification

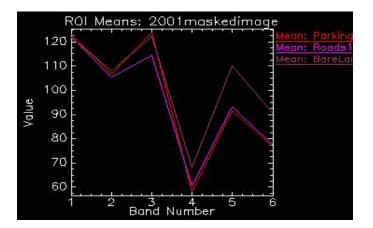
Class number	Class color	Identification		
1	Red	Water Dark pixels in visible (fields, quarries)		
2	Green	Intertidal Urban Land		
3	Blue	Vegetation (parks, fields)		
4	Yellow	Urban Land		
5	Cyan	Agricultural Land		
6	Magenta	Urban Land Agricultural Land		
7	Maroon	Urban Land		
8	Seamarine	Urban Land (Bright pixels in color infrared composite)		
9	Purple	Forest Land		
10	Coral	Vegetation (parks, fields)		

08/11/1989 Unsupervised classified image

Class number	Class color	Identification
1	Red	Intertidal Vegetation (parks, fields)
2	Green	Vegetation (parks, fields)
3	Blue	Agricultural Land
4	Yellow	Canals Agricultural Land
5	Cyan	Urban Land
6	Magenta	Agricultural Land
7	Maroon	Agricultural Land
8	Seamarine	Intertidal Urban Land
9	Purple	Urban Land (Bright pixels in color infrared composite)
10	Coral	Agricultural Land Urban Land

Choice of classes

USGS « LU/ LC Classification System for Use with Remotely Sensed Data »


Level I : Urban Land, Agricultural Land, Range Land , Forest Land, Water and Barren Land

From the unsupervised classification :

- 2 classes for urban: Urban Land LA and Urban Land HA

From the spectral patterns :

No class for Barren Land

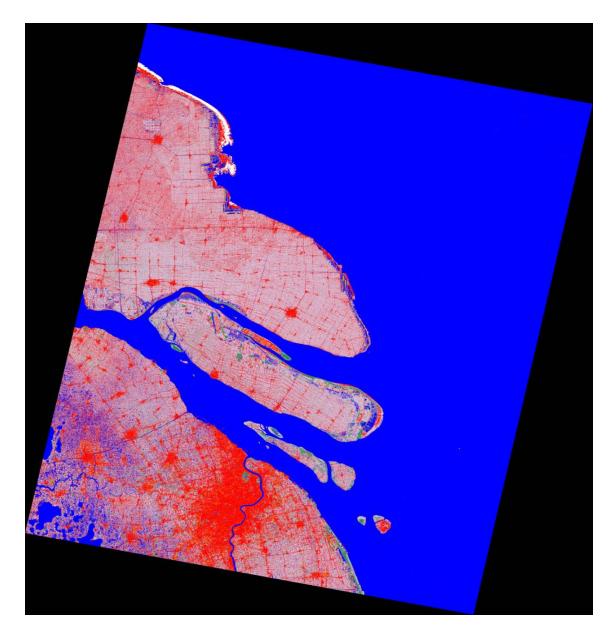
Spectral separability between Barren Land and Highways : Jeffries-Matusita : 1.07993221<1.9 Transformed Divergence : 1.35410740<1.9

Seven classes

Class name	Definition
Urban Land HA	Blue and white roofs; Bright quarries
Urban Land LA	Red, brown and grey roofs; Parkings; Highways; Railways; Dark quarries
Agricultural Land	Croplands; Pastures
Range Land	Grass
Forest Land	Trees
Water	Ocean; Rivers; Lakes; Reservoirs; Aquaculture pounds
Intertidal	In between the land and the sea

Caution : Intertidal and RangeLand spectrally similar to other classes

Supervised classification (2001)


Method :

- Define several ROIS for each class
- Run the classification with all the ROIS.

Maximum likelihood algorithm

- Combine the classes

07/03/2001 Supervised classified image

Legend

- Urban LA
- Urban HA
- Agricultural Land
- Range Land
- Forest Land
- Water
- Intertidal

Problem

Problem 1 : Fuzzy.

But reflects the reality. Each urban pixel in a field is partly made of a urban element.

The aim of the project is to find out if having a urban surface instead of a non urban one changes the albedo.

 \rightarrow Keep it fuzzy.

Problem 2 : Mixed pixels of canals and fields classified as Agricultural Land.

Class Statistics

Class	Nb of pixels	Area %
Urban HA	169,927	0.61
Urban LA	3,350,412	11.94
Agricultural Land	6,764,447	24.10
Range Land	62,887	0.22
Forest Land	391,578	1.39
Water	17,248,470	61.44
Intertidal	83,730	0.30
Total	28,071,451	100

Land Class	Land Area %
Urban HA	1.57
Urban LA	30.96
Agricultural Land	62.5
Range Land	0.58
Forest Land	3.62
Intertidal	0.77
Total	100

Land = 1/3 Urban 2/3 Agricultural

Accuracy assesment

Ground truth data : Google Earth

<u>Location</u> : Subset of Shanghai <u>Dates</u> : 11/21/2000 and 07/23/2002

Google Earth 11/21/2000

At least 40 GCPs per class Hypothesis : If a pixel has the same land cover in 2000 and 2002 \rightarrow Same land cover in 2001

Results

Overall accuracy = Number of correctly classified pixels / total number of reference pixels

Overall accuracy = 90.4018%

Kappa coefficient

Represents the probable better accuracy of the employed maximum likelihood classification than if the classification resulted from a random assignment instead.

Kappa coefficient = 0.8090

Confusion matrix

Class	Urban LA	Urban HA	Agri	Range	Forest	Water	Intertidal	Total
Urban LA	96.94	0	12.24	9.76	2.5	2.08	20	69.42
Urban HA	1.61	100	0	0	0	0	0	7.48
Agri	1.45	0	71.43	53.66	12.5	0	0	7.92
Range	0	0	2.04	7.32	0	0	0	0.45
Forest	0	0	14.29	29.27	85	0	0	5.92
Water	0	0	0	0	0	97.92	0	5.25
Intertidal	0	0	0	0	0	0	80	3.57
Total	100	100	100	100	100	100	100	100

Class	Urban LA	Urban HA	Agri	Range	Forest	Water	Intertidal
Producer Acc.	96.94	100	71.43	7.32	85	97.92	80
User Acc.	96.78	85.07	49.30	75	64.15	100	100

User accuracy =Nb of correctly classified pixel in the category / total nb of pixels classified in that category Indicates the probability that a pixel classified into a given category actually represents that category on the ground.

Good for urban classes.

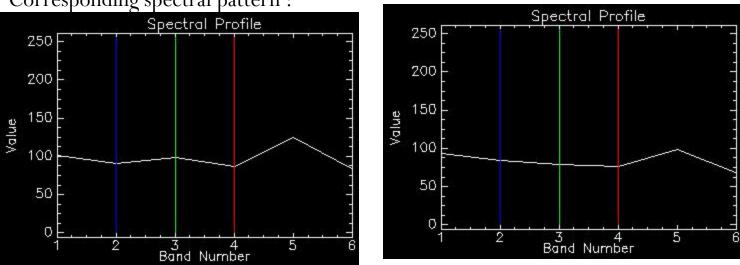
Not so much for vegetation classes but misclassification in other vegetation classes

Supervised classification (1989)

Same method but new ROIS

Pb : no ground truth data

- Water ROIS from the unsupervised classification
- Other ROIS : Take previous ROI


Check if the spectral pattern correspond

Future work

- Finish the 1989 image classification
- Land cover change

Highlight the classification problems to solve

- Too many HA pixels misclassifed as LA -> Change the ROIS repartition into the class
- Agricultural Land misclassified as Urban Land LA

Corresponding spectral pattern :

New Agricultural Land ROIS with these 2 kinds of spectral pattern