Transfer coefficients of momentum, heat and water vapour in the atmospheric surface layer of a large freshwater lake

Wei Xiao, Xuhui Lee*, Shoudong Liu, Shuanghe Shen, Wei Wang

Heat Budget Group Meeting June 30, 2011

Outline

- 1. Introduction
- 2. Methods
- 3. Results and Discussion
- 4. Conclusion

1. Introduction (1)

- Lake is an important land surface type for atmospheric research.
 - There are 304 million lakes in the world, covering 4.2 million km² in area.
 - Having lower albedos and larger heat capacity than land, lakes store more solar radiation and have greater capacity to buffer variations of air temperature.
 - Lakes are also sources of atmospheric moisture.
 - Lakes are aerodynamically much smoother than vegetated land surfaces, a factor that contributes to variations of atmospheric flow in the landscape.

(Rouse et al. 2003, 2005; Long et al. 2007; Downing et al. 2006; Herderson-Sellers 1986; Bonan 1995; Betts and Ball 1997; Liu et al. 2005).

1. Introduction (2)

- A critical issue here concerns the accuracy of the <u>transfer coefficients</u> because any bias in them will propagate directly to the flux variables.
 - Land-atmosphere interactions are driven by the fluxes of momentum, sensible heat and water vapor between the earth's surface and the atmosphere.
 - Even though frequently used in quantifying these fluxes in dryland ecosystems, eddy covariance is deployed in very few lake-air exchange studies and over short durations

1. Introduction (3)

- The inclusion of lakes in numerical weather prediction (NWP) and climate models improves model performance.
 - The exchange coefficients are taken from experimental studies conducted in <u>open oceans</u> but we do not know if these coefficients are applicable to lake environments.
 - Although the exchange coefficients have been reported in several lake experimental studies, no research has been conducted on evaluating <u>the oceanographic</u> <u>parameterizations</u> for C_D, C_E and C_H with flux observations made in lakes.

1. Introduction (4)

- Based on the in-situ fluxes measurement using the eddy covariance method on Lake Taihu (a large and shallow lake with area of 2338 km² and mean depth of 1.9 m).
 - To identify the transfer coefficients of momentum, moisture and heat on Lake Taihu;
 - To compare the transfer coefficients of Lake Taihu with those of other lakes and oceans;
 - To test the sensitivity of the transfer coefficients to the stability correction and wind speed.

2. Methods- Sites on Lake Taihu

Period: June 14 to December 31, 2010; Fetch: >8km

2. Methods- Mass transfer equations

The coefficients C_{DN} , C_{EN} and C_{HN} were optimized by minimizing

Transfer coefficients - the surface roughness

$$C_{DN} = k^{2} / [\ln(z/z_{0})]^{2}$$
Momentum roughness
$$C_{EN} = k^{2} / [\ln(z/z_{0})\ln(z/z_{q})]$$
Roughness length for water vapor
$$C_{HN} = k^{2} / [\ln(z/z_{0})\ln(z/z_{T})]$$
Roughness length for temperature

The neutral transfer coefficients at the height of 10 m above the water surface

$$C_{D10N} = k^{2} / [\ln(10/z_{0})]^{2}$$

$$C_{E10N} = k^{2} / [\ln(10/z_{0})\ln(10/z_{q})]$$

$$C_{H10N} = k^{2} / [\ln(10/z_{0})\ln(10/z_{T})]$$

3. Results and Discussion

Lakes	$10^3 C_{\rm D10N}$	$10^3 C_{\rm E10N}$	$10^3 C_{\rm H10N}$	References	
Lake Taihu (MLW)	1.52	0.82	1.02	This study	
Lake Valkea-Kotinen,	1 21	1.06	1.25	Nordbo et al. (2011)	
Southern Finland	1,41				
Lake Tämnaren,	1 /2	0.88	1.13	Heikinheimo et al. (1999)	
Sweden	1.44				
Ross Rarnett Reservoir,	1 80	0.07	1 22	$\mathbf{L} \mathbf{i} \mathbf{u} \mathbf{o} \mathbf{t} \mathbf{o} \mathbf{l} \mathbf{o} \mathbf{l} \mathbf{o} 0 0$	
mississippi, USA	1.07	0.97	1.43	Liu et al. (2009)	
Great Slave lake	1.66	1.44	0.49	Blanken et al. (2003)	
Lake mean	1.54 (±0 26)	1.03 (±	0.24) 1.02 (± 0.31)	

We suggest that errors in T_s are one reason for the scatters in $C_{\rm E10N}$ and $C_{\rm H10N}$ found in the literature.

Ocean schemes -COARE

$$z_0 = \frac{au_*^2}{g} + \frac{0.11v}{u_*}$$

$$z_{T} = z_{q} = \min(1.1 \times 10^{-5} \, m, 5.5 \times 10^{-5} \, \text{Re}_{*}^{-0.6})$$

 $\text{Re}_{*} = \frac{z_{0m} u_{*}}{v}$

Ocean parameterization	$10^{3}C_{D10N}$	$10^{3}C_{E10N}$	$10^{3}C_{H10N}$
BDY	3.89(1.01-248.21)	1.72 (1.19-13.5)	0.70
CCM3 & CAM3	1.46 (1.05-12.57)	1.29 (1.12-3.88)	1.22 (1.06-3.67)
COARE 3.0	1.08 (0.97-1.63)	0.96 (0.91-1.16)	0.96 (0.91-1.16)
ECMWF	1.11 (0.91-1.73)	1.11 (1.07-1.33)	1.07 (1.03-1.27)
GEOS-1	1.15 (0.96-1.56)	1.02 (0.90-1.24)	1.08 (0.93-1.30)
GSSTF-2	1.11 (0.99-1.65)	1.12 (1.06-1.33)	1.02 (1.02-1.26)
HOAPS	1.32 (1.25-1.90)	1.20	1.00
J-OFURO	1.14 (1.14-1.43)	1.19 (1.08-1.57)	2.16(1.97 2.85)
UA	1.32(1.25-1.90)	1.26 (1.19-1.86)	1.26 (1.19-1.86)
Ocean mean	1.21(±0.14) **	1.14(±0.11)	1.22(±0.39)
Lake mean	1.54 (±0 26)	1.03 (±0.24)	1.02 (±0.31)

Filled circles: Parameters of Lake Taihu Open squares: Parameters of ocean

Filled circles: Observation on Lake Taihu

Thick solid line: Calculation with parameters of Lake Taihu Thin solid lines: Calculation with parameters of ocean

		Without stability		With stability		Sonsitivity		
Paremeterization	Fluxes	correction		correction			analysis	
		RMSE	ME	RMSE	ME	_	anarysis	
Lake Taihu	$u * (\mathrm{m \ s^{-1}})$	0.062	-0.011	0.061	-0.011		stability corrections	
	<i>LE</i> (W m ⁻²)	26.6	-2.1	25.4	-1.6		improved the calculations only	
	<i>H</i> (W m ⁻²)	5.5	-1.1	5.4	-0.7		marginally	
Oceans mean value	$u*(\mathrm{m\ s}^{-1})$	0.066	-0.032	0.066	-0.031			
	<i>LE</i> (W m ⁻²)	40.6	23.1	41.5	25.6		Stability corrections did not bring	
	$H (\mathrm{W m}^{-2})$	5.9	-0.1	6.1	0.6		improvement	
Constant coefficients	u_* (m s ⁻¹)	0.071	-0.040	0.070	-0.040			
(COARE)	$LE (W m^{-2})$	28.5	6.3	27.9	7.9		The wind-dependent coefficients did not improve the simulation	
	$H (\mathrm{W m}^{-2})$	5.6	-1.5	5.4	-1.0			
Wind-dependent	$u_* ({ m m s}^{-1})$	0.064	-0.036	0.064	-0.036			
coefficients	<i>LE</i> (W m ⁻²)	29.8	7.6	29.2	9.2			
(COARE)	<i>H</i> (W m ⁻²)	5.6	-1.1	5.5	-0.7			

4. Conclusion

- The drag coefficient of shallow lakes was higher than ocean.
- The effect of stability and wind speed were negligible on the fluxes calculation.

