

Yale School of Forestry & Environmental Studies

Source or Sink? Characterizing CH₄ flux

in a Soybean and Corn Dominated Landscape

Xin Zhang June 30, 2010

Outline

Objectives
Background
Methods
Results
Summary

Objectives

To evaluate CO₂ and CH₄ fluxes from agricultural plants during the growing season (soybean and corn; aboveground and belowground section).

To explore the impact of fertilization on CO₂ and CH₄ fluxes from agricultural fields.

Objectives (continued)

To revise the current CH₄ inventory
 To build up a systematical method to research on gas inventory

Global CH₄ budget

Sources		CH ₄ (Tg CH ₄ yr ⁻¹)
Natural	Wetland	92-237
	Termites	20-20
	Ocean	10-15
	Hydrates	
Anthropogenic	Rice agriculture	
	Ruminant animals	
	Energy	75-109
	Landfills	35-73
	Biomass burning	23-55
Total Sources		500-600
Sink	Troposphere OH	450-510
	Stratospheric loss	40-46
	soils	10-30

A summary of observed CH₄ flux from Corn (*zea mays*)

Reference	Method	Flow	Light	Temperatu	Back ground	Intact/d	Result
				re (°C)	concentration	etached	
Beerling et al., 2008	flow through cuvette; FID CH ₄ sensing instrument	800ml min ⁻¹	photosynthetically active radiation /dark	25	CH ₄ (59ppbv), CO ₂ (1000ppm) and high purity artificial air	intact	$-20 \sim 20 \text{ CH}_4 \text{ gdw}^{-1}$ h $^{-1}$
Dueck et al., 2007	continuous-flow gas cuvettes; 13C-labelling approach	60-120 l h ⁻¹	controlled light intensity (300/600 μmol m ⁻² s ⁻¹)	25/35	¹² CH ₄ : 2100ppb ¹³ CH ₄ : 22ppb CO ₂ : 200~300ppm	intact	28±36 ng CH ₄ gdw ⁻ ¹ h ⁻¹
Kirschbaum and Walcroft, 2008	non-flow-through chamber	N/A	lighted by fluorescent lamps at the intensity of 5 μmol quanta m ⁻² s ⁻¹	20 RH=100%	CH ₄ free	intact	-0.25±1.1 ng CH ₄ gdw ⁻¹ h ⁻¹
Nisbet et al., 2009	non-flow-through Chamber (gas removed at 24 hr. and 48 hr.)	N/A	fluorescent, 180 μmol m ⁻² s ⁻¹ , photosynthetically active.	N/A	ambient CH ₄ concentration(1984- 2021ppb)	detached leaves	emission was negeligible
Keppler et al., 2006	incubation Chamber	N/A	direct sunlight	ambient temperature	CH ₄ free	intact	374(198/598)ng CH ₄ gdw ⁻¹ h ⁻¹
			Dark	ambient temperature	CH ₄ free	intact	119(30.7/207) ng CH ₄ gdw ⁻¹ h ⁻¹
Vigano et al., 2008	flow-through chamber(detection limit is about 2 ng gdw-1 h-1)	100-500 ml min ⁻¹	UV radiation: 49 W m ⁻²	30	ambient CH ₄ concentration or CH ₄ free	detached (fresh)	50ng CH ₄ gdw ⁻¹ h ⁻¹
		100-500 ml min ⁻¹	UV radiation: 49 W m ⁻²	30	ambient CH ₄ concentration or CH ₄ free	detached (dry)	26ng CH ₄ gdw ⁻¹ h ⁻¹

Experiment artifacts

Light condition

- Background CH₄ concentration
- Intact and detached plant
- Temperature and humidity

Methods- Modified Bowen Ratio method

$$F_{2} = F_{1} \frac{\partial c_{2} / \partial z}{\partial c_{1} / \partial z}$$

- Assumption: all the scalar quantities were transferred indiscriminately.
- In the equation, F₂ is the flux of CH₄, F₁ is the flux of CO₂, ∂c₂/ ∂z is the gradient of CH₄, and ∂c₁/ ∂z is the gradient of CO₂. Here, the CO₂ flux was the average between close path eddy covariance systems on the two towers, one in corn field and in soybean field.

Research Site

- University of Minnesota Rosemount Research and Outreach Center
- Land cover types: within 5km, 32.5% for corn, 10.5% for soybean
- Soybean-corn rotation field
- Field management (fertilization, irrigation)

Methods: observation systems

Results: chamber blank tests

Chamber	CH ₄ (μmol m ⁻² s ⁻¹)	CO ₂ (µmol m ⁻² s ⁻¹)
Small	1.68×10 ⁻⁴ ± 8.23×10 ⁻⁵	-0.23± 0.06
Medium	3.93×10 ⁻⁵ ± 4.44×10 ⁻⁵	-0.23± 0.20
Big	5.02×10 ⁻⁴ ± 4.60×10 ⁻⁴	-1.00± 1.19

Results: daily averaged plant flux

Results: plant flux through the growing season

Results: plant flux for midday and midnight

CH₄ flux vs. CO₂ flux and environment parameters

P-value	Incoming Solar radiation	Air Temperature	Soil moisture	Soil Temperature	Day time CO ₂ flux (photosynth esis)	Night time CO ₂ flux (respiration)
Daytime CH ₄	(+)	(+)	(-)	(+)	(-)	N/A
flux from corn	p = 0.00383	p = 0.0348	p =0.00541	p =0.035	p =0.0058	
Nighttime CH ₄ flux form corn	Not Related	(-) p = 0.0127	Not Related	Not Related	N/A	(-) p=0.133
Daytime CH ₄ flux from soybean	(+) p= 0.084	Not related	Not related	Not related	(-) p=0.079	N/A
Nighttime CH ₄ flux form soybean	Not related	Not related	(+) p=0.05	Not related	N/A	(-) p<1×10 ⁻⁷

Results: CO₂ flux vs CH₄ flux on plant scale

Relation between CO_2 flux and CH_4 flux from plants: red dot – daytime average flux from fertilized plant; blue dot – daytime average flux from unfertilized plant; red triangle – night time average flux from fertilized plant; blue triangle – night time average flux from unfertilized plant.

Result: CH₄ production and consumption

CH4	Day time	Night time
production	UV radiation	Diffusion
consumption	Methanotrophy / CO2 respiration	Methanotrophy / CO2 respiration

Results: Regional scale flux

Ensemble diurnal variation of CH_4 fluxes calculated from the tall tower gradient measurement, August 2009: blue dot – hourly flux value; red circle – median value for each hour of the day

Nigh time flux

CO₂ gradient and H₂O gradient correlated CO₂ gradient vs CH₄ gradient on regional scale

Diurnal pattern of CH₄ concentration

Results: CO₂ gradient vs CH₄ gradient on regional scale

Linear relationship between the night CH_4 and CO_2 gradients, August 2009. The results of the linear regression are shown. Each data point represents the block average between 2300-0400 LST.

Result: diurnal pattern of CH₄ concentration

all the concentration on each hour, and the error bars are the standard deviation.

STILT model

Longitude

time

Observe vs. modeled

Summary

Method	Target	DayCH ₄	NightCH ₄
Chamber	Corn (unfer)	+0.8×10 ⁻³	-0.7×10 ⁻³
	Corn (fer)	+0.8×10 ⁻³	-0.5×10 ⁻³
	Soybean (unfer)	+0.2×10 ⁻³	-0.1×10 ⁻³
	Soybean (fer)	+0.3×10 ⁻³	-0.2×10 ⁻³
Tall tower	Landscape (corn/soybean/ soil/industry/la ndfill)	-0.04	0.02

Summary

Method	Target	DayCH ₄	NightCH ₄
Chamber	Corn (unfer)	+0.8×10 ⁻³	-0.7×10 ⁻³
	Corn (fer)	+0.8×10 ⁻³	-0.5×10 ⁻³
	Soybean (unfer)	+0.2×10 ⁻³	-0.1×10 ⁻³
	Soybean (fer)	+0.3×10 ⁻³	-0.2×10-3
Tall tower	Landscape (corn/soybean/ soil/industry/la ndfill)	-0.04	0.02

Summary

Method	Target	DayCH ₄	NightCH ₄
Chamber	Corn (unfer)	+0.8×10 ⁻³	-0.7×10 ⁻³
	Corn (fer)	+0.8×10 ⁻³	-0.5×10 ⁻³
	Soybean (unfer)	+0.2×10 ⁻³	-0.1×10 ⁻³
	Soybean (fer)	+0.3×10 ⁻³	-0.2×10 ⁻³
Tall tower	Landscape (corn/soybean/ soil/industry/la ndfill)	-0.04	0.02