The LANDSAT Heat Island
Heat island is usually defined by the difference in *air* temperature between an urban area and its surrounding rural area at the inertial sub-layer of the urban boundary layer.
The LANDSAT Heat Island

Other Accepted Forms of Heat Island:

-The air temperature difference of the urban canopy from the air temperature of the surrounding area.

-The difference in urban surface temperatures from surrounding surface temperature.
The LANDSAT Heat Island

LANDSAT measures none of the three accepted types of heat island.
The LANDSAT Heat Island

-LANDSAT temperature is roughly correlated to night-time air temperature* at the top of the urban canopy layer.

-Thus, it is probably most related to the urban canopy heat island at night out of the three accepted heat islands.

-However, the specific degree measurement of LANDSAT temperature cannot be trusted as a means of measuring any heat island.

-The best LANDSAT can offer is a hint at the sources of higher temperature in the night-time canopy by comparing LANDSAT temperatures to other criteria or to one another.

*It is generally accepted that heat island is more intense at night and an inability to release heat at night intensifies the overall island.
Old Change Detection Images

NDVI Change

Albedo Change

Temperature Change
New Change Detection Images

NDVI Change
- Masked out non-vegetated pixels to NaN (enhanced image)
- Masked out water pixels (i.e., algae)

Albedo Change
- Masked out vegetated pixels
- Masked out water pixels
- Masked out some shadow pixels

Temperature Change
- No change since last time
Correlations in Single Images
NDVI to Temperature Correlation

Vegetated Pixel NDVI to Surface Temperature 1995

Temperature (K)

NDVI

-0.604731
NDVI to Temperature Correlation

Vegetated Pixel NDVI to Surface Temperature 2009
NDVI to Temperature

NDVI itself is very well correlated to lower temperatures

(this is the strongest correlation in the study)
Albedo to Temperature Correlation

Non-Vegetated Non-Water Albedo to Surface Temperature 1995

Albedo to Temperature Correlation

Temperature (K)

Albedo
Albedo to Temperature Correlation

Non-Vegetated Non-Water Albedo to Surface Temperature 2009

Temperature (K)

Albedo

-1.69801
Albedo to Temperature

Albedo itself is not very well correlated to lower temperatures. It’s correlation cannot compare to that of vegetation and it sometimes appears to be non-existent.

However, the correlation of albedo to surface temperature increased almost threefold over the course of the study period.
Initial Conclusions

Conclusions:

- This method of LANDSAT analysis supports the scientific agreement that urban heat island is primarily caused by a removal of vegetation (and not albedo changes).

- It is consistent with observations that large parks and areas with abundant vegetation are often the coolest parts of a city in Summer.

- It suggests that the ideal method of dealing with urban heat island is to have abundant vegetation throughout the city.
Positive NDVI Change to Temperature Change (over the 13 study period)

Includes all pixels that increased past the .3 threshold or within the .3 threshold
Positive Albedo Change to Temperature Change
(over the 13 study period)

Positive Albedo Change to Surface Temperature Change (1995-2009)

Includes all non-vegetated, non-water, non-shadow pixels that increased in albedo
Final Conclusions

The city’s policies and citizen efforts to increase vegetation in the last 13 years do not seem to be restoring places to the cooling potential of abundantly-vegetated areas (as in the city’s large parks).

The city’s reflective policies are cooling urban surfaces more than might be typically expected by single date urban albedo studies.

Even though reflective roofs do not represent an ideal strategy for addressing urban heat island and probably should not represent a long-term or final goal, they can be much more effective over a 15-year period than vegetation strategies (at least in the case of Chicago). This is probably because of cost.
Further Support
(Aerial Photography of Policy Examples)

1998
Single visible band
1 meter resolution

2010
True color visible bands
1 meter resolution
Reflective Roof Neighborhood

1998

2010

NDVI Change

Albedo Change

Temp. Change
Street Tree Neighborhood

1998

2010

NDVI Change

Albedo Change

Temp. Change
New Park 1 (from old rail yard)

1998

2010

NDVI Change

Albedo Change

Temp. Change
New Park 2 (from part of power plant)

1998

2010

NDVI Change

Albedo Change

Temp. Change
Grass Replacing Asphalt Schoolyard

1998

2010

NDVI Change

Albedo Change

Temp. Change
New Greenroof

1998

2010

NDVI Change

Albedo Change

Temp. Change
Road Reflectivity Increase

Further Support
(Replicated Experiment)

July 1st 1995
(O’Hare: Mean Temp of 65)

July 7th 2009
(O’Hare: Mean Temp of 68)
Further Support
(Replicated Experiment)

Correlations in Initial Image Pair:

- 1995 NDVI to Temp: -.604731
- 2009 NDVI to Temp: -.647356
- 1995 Albedo to Temp: -.069700
- 2009 Albedo to Temp: -.189801
- Positive NDVI Change to Temp Change: -.11675
- Albedo Change to Temp Change: -.364382
- Number of Pixels with Increased NDVI: 102,770
- Number of Pixels with Increased Albedo: 341,342

Correlations in Replicated Image Pair:

- 1995 NDVI to Temp: -.701520
- 2009 NDVI to Temp: -.599737
- 1995 Albedo to Temp: -.165308
- 2009 Albedo to Temp: -.011913
- Positive NDVI Change to Temp Change: -.201431
- Albedo Change to Temp Change: -.249621
- Number of Pixels with Increased NDVI: 81,502
- Number of Pixels with Increased Albedo: 245,254
Further Support
(Replicated Experiment)

Correlations in Initial Image Pair:

1995 NDVI to Temp: -.604731
2009 NDVI to Temp: -.647356

1995 Albedo to Temp: -.069700
2009 Albedo to Temp: -.189801

Positive NDVI Change to Temp Change: -.11675
Albedo Change to Temp Change: -.364382

Number of Pixels with Increased NDVI: 102,770
Number of Pixels with Increased Albedo: 341,342

Correlations in Replicated Image Pair:

1995 NDVI to Temp: -.701520
2009 NDVI to Temp: -.599737

1995 Albedo to Temp: -.165308
2009 Albedo to Temp: -.011913

Positive NDVI Change to Temp Change: -.201431
Albedo Change to Temp Change: -.249621

Number of Pixels with Increased NDVI: 81,502
Number of Pixels with Increased Albedo: 245,254

Is this the result of broader leaves/hotter temperatures later in the summer or is it some atmospheric anomaly?
Further Research

Examine the image pairs from early August:

- **July 30th 1994**
 (O’Hare: Mean Temp of 71)

- **August 3rd 2007**
 (O’Hare: Mean Temp of 80)